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ABSTRACT 

In this study 3-component mixture model using Ailamujia distribution  is analyzed under 

Bayesian paradigm. Joint posteriors are obtained for Jeffreys’ and gamma priors. Bayes 

estimators of  mixture parameters and  associated Bayes risks are derived using three loss 

functions i.e  squared error loss function (SELF), precautionary loss function (PLF) and 

DeGroot loss function (DLF). The prior predictive method is used for hyper parameter 

elicitation . To numerically check the performance of Bayes estimators, simulated results are 

obtained for  different test termination times, parametric values and sample sizes.  Two  data 

sets,  on  repair times of refrigerator components and recovery times of cancer patients are 

analyzed to numerically exhibit the applicability of proposed mixture model.  Results  suggest 

that DLF is a better option for estimating the component parameters. 

Keywords: Mixture Model ;  Bayes risk;    Loss function;  Hyperparameters ;  Prior predictive 

method; Jeffreys’ prior 

1. Introduction 

A new lifetime probability model by Lv et al. (2002) known as an Ailamujia distribution is an 

emergent candidate in supportability data analysis  in the field of engineering, medical science 

and quality control. Ailamujia distribution has proven suitable to be applied in some practical 
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situations, such as to model the repair, guarantee and the distribution delay times. For example, 

Yu et al. (2008) used the Ailamujia distribution to analyze the degree of injury in the battle 

ground and developed a new method to address the issues related to production and distribution 

of such injury in campaign macrocosm. As a competitive model, this new distribution has 

attracted attention of many authors.  Long (2015) presented the Bayesian analysis of Ailamujia 

distribution by taking type-II censoring under three different priors. Rashid et al. (2018) 

developed a new compound lifetime distribution called Ailamujia Power Series Distribution 

(APSD). Jayakumar and Elangovan (2019) introduced Area Biased weighted Ailamujia 

distribution (ABWAD). Rather et al. (2022) studied Exponentiated Ailamujia distribution and 

explored its properties. Gomma et al. (2023) introduced an alpha power Ailamujia distribution 

and showed that it is more suitable then existing competing models.  Aijaz et al. (2022) analyzed 

count data by formulating poisson area biased Ailamujia distribution. 

The probability density function (p,d,f) and cumulative distribution function (C.D.F) of  

Ailamujia distribution are given as respectively: 

2(x; ) 4 exp( 2 )f x x                                x 0 , 0i                                                  (1)                                                                                                                                                           

(x) 1 (1 2 )exp( 2 )F x x                                                                                               (2) 

Where   is an unknown parameter. 

Mixture models formally are composed of  two or more probability distributions to capture 

heterogeneity present in the data. Mixture models have widespread applications almost in all  

fields of life, from economics to medicine, engineering, social sciences and psychology. For 

example, in genetics, on a chromosome the location of the quantitative traits and interpretation 

about microarrays both are connected to mixtures. If some specific mechanism is defined on the 

basis of which observations are allocated to one of the member of population is usually termed as 

direct application of mixture models. For example, financial returns act differently in crisis and 

normal situation. When mixtures are only defined for simplicity or mathematical flexibility and 

we do not assume any underlying mechanism then it refers to an  indirect application of mixed 
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models. Finite mixture model is used as flexible model when distributions are heavy tailed, data 

is heterogeneous and heterogeneity is observed in cluster analysis. Several statisticians have  

used mixture distribution to analyze different statistical problems. For example, Kanji (1985) 

used mixture distribution to describe the wind shear data. Noor et.al. (2020) applied Inverted 

Kumaraswamy (IKum) mixture model to estimate burning velocity of different chemicals. 

Feroze and Aslam (2020) considered the reliability estimation for the Topp Leone mixture model 

using Bayesian technique. For analysis and applications of mixture models one can see Castet 

and Saleh (2010) and references therein.   

Censoring is  a condition in lifetime data when only partial information is observed.  In this 

context Romeu (2004) and Gijbels (2010)  have provided valuable amount of  information. Noor 

and Aslam (2013) analyzed inverse Weibull mixture model using type-I censoring scheme under 

Bayesian perspective. Noor et.al. (2021) formed a 4-component mixture model to estimate the 

average number of incidences and deaths for both genders considering different types of cancer 

diagnosed in Pakistan . Tahir et al. (2019) used doubly censored data  to analyze the mixture of 

Burr-XII distributions under Bayesian setup.  

Vast usefulness of mixture modeling motivated us to propose a new versatile 3-component 

Ailamujia mixture model. The proposed model is thus analyzed under Bayesian setup using 

censored data.   

The main scheme in the article is  as follows: A model to be analyzed  along with its likelihood 

function for type-I censoring scheme is given in section 2. The joint posteriors assuming non-

informative and informative priors are derived in the same section. Further, section 2 also 

contains the derived Bayes estimators under three different loss functions. Elicitation of  

hyperparameters is also part of this section. Simulated and real data results and discussion on 

results is provided in section 3.  Conclusion derived from the study is given in section 4.  

2. Materials & Methods  



 

This section contains the model, likelihood function and estimation of parameters under different 

loss functions using informative and non-informative priors. 

2.1 The model and likelihood function 

A finite 3-CAMM for a random variable X is defined as:  

3

1

(x, ) ( )d d

d

f p f x


  , 

3
2

1

(x; ) 4 exp( 2 )d d d

d

f p x x 


                                                                                                (3) 

And C.D.F of 3-CAMM is given as:
 

3

1

(x, ) 1 (1 2 )exp( 2 )d d d

d

F p x x 


 
     

 
                                                                      (4) 

Where    ( ,p ),d d      1,2,3d  ,             1 2, 0p p  , 1 2 1.p p  , 0x  , 0d    

Figure:1 shows the p.d.f and C.D.F  of 3-component  Ailamujia  mixture distribution and it can 

be viewed that graph of the distribution is positively skewed. 

 

  Fig :1 Graph of the p.d.f  and C.D.F of 3-component mixture of Ailamujia distribution 

Let we assume a  life time experiment for a  3-CAMM with a fixed termination time.  It is 

observed that r  out of  n  total units are failed  by the end of the experiment and  remaining 

n r  units are functional. So, after  inspecting r  units (failed items), it is possible to identify 
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1 2,r r and 3r units and assign them to three subpopulations  respectively. Here  obviously 

1 2 3r r r r    represent total number of uncensored observations and the remaining n r  

observations are known as censored observations. Let define hjx   0 hjx t  , as the lasting time 

of the 
thj ( 1,2,..., )hj r unit that belongs to the thh  ( 1,2,3)h   subpopulation. The likelihood 

function of a 3-component mixture model for type-I right censored data (Everitt and Hand 

(1981)) can be written as: 

 
31 2

1 1 1 2 2 2 1 2 3 3

1 1 1

( | x) ( ) ( ) (1 ) ( ) 1 ( )
rr r

n r

j j j

j j j

L p f x p f x p p f x F t


  

   
       

   
          

(5)      

 After simplification the likelihood function becomes:  
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(6)     

                                                                                                                                                              

Where ( , ), 1,2,3d dp d    1p , 2p  and 3p are mixing proportions and 1 2, 0p p  , and 

1 2 311 1 21 2 31 3( ,..., , ,..., , ,..., )r r rX x x x x x x  are the observed failure times. 

2.2.     Posterior distributions using Jeffreys’  and Gamma priors 

Non-informative prior is used when no or limited information is available about the parameter. 

Most commonly used non-informative prior is Jeffreys’ prior. Informative prior (IP) on the other 

hand conveys definite information about the parameter of interest. In this study gamma prior is 

used as an informative prior. 



 

2.2.1. Posterior distribution using NIP 

 Jeffreys’ prior is considered for  mixture model parameters d . Jeffreys prior utilizes the Fisher 

information criteria and is defined as
1

2( ) | ( ) |d dp I  , 1,2,3,d   where 

2

2

( | )
( ) d

d

d

f x
E






 
    

 
 is the Fisher’s information matrix. While prior for mixing proportion 

dp  is assumed to be  uniform over the interval (0,1) . The joint prior distribution of parameters 

d  and dp  (Sinha, 1998) is written as: 

 
3

1

1
( )NIP

d d




   ,                                    0, 0 1d dp                                              (7)   

Using JP (Eq. (7)) and likelihood function (Eq. (6)), the joint posterior distribution becomes: 
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(8)                                                                             

where 
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2.2.2. Posterior distribution using IP 

Suppose (v ,u )d d dgamma  and proportion parameters (u,v,w)dp BivBeta .The joint prior 

distribution is written as:   

31 1 2 2

3

1 1 1 1 1
131 1 2 2 1 2 1 2

1 1 2 2 3 3 3

1 2 3

(1 )
( ) exp( ) exp( ) exp( )
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   (9)                                                                                                                                                                                                                                                                                                                                                                           
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Resulting posterior distribution using IP (Eq. (9)) and likelihood function (Eq. (6)),   is given as:   
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2.3. Bayesian estimation under different loss functions 

Loss function is essential component of Bayesian estimation and different loss functions are used 

to serve the purpose as there is no proper analytical method and rule that identifies which loss 

function is appropriate to be used. The symmetric loss functions are not suitable in many 

statistical problems, especially when we want to estimate the reliability and failure rates because 

overestimation will generate more loss than the underestimation. So, we use both symmetric and 

non-symmetric loss functions to evaluate Bayes estimators. Squared error loss function (SELF) 

is the most famous among symmetric loss functions in Bayesian statistics. But precautionary loss 

function (PLF) and DeGroot loss function (DLF) are frequently used non-symmetric loss 

functions. The Bayes estimator   is obtained by minimizing Bayes risk is defined 

as
|( ) { ( , )}XE L    , where ( , )L    is the loss incurred in estimating   by . The 

expressions for Bayes estimators and their risks  under these loss functions are given in Table 1.  

 Table1. Bayes estimators and their risks  under loss functions 



 

Loss Functions Bayes Estimators Bayes Risks 
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2.3.1 Bayes Estimators and Bayes Risks under SELF 

In perspective of least square theory, SELF was introduced by Legendre (1806). Following 

Bayes estimators and Bayes  risks  are obtained using JP and IP under SELF: 
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And respective risks are:                                                                            
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Where v = 1 for JP and v = 2 for GP and s represent the SELF  

2.3.2 Bayes Estimators and Bayes Risks under PLF 

Norstrom (1996) introduced PLF and a special case of general class of PLFs. The Bayes 

estimators and Bayes risks using JP and IP under PLF are given as: 
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Relevant Bayes risks are:
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Where v = 1 for JP and v = 2 for GP and p represent the PLF 

 2.3.3 Bayes Estimators and Bayes Risks under DLF 

DeGroot loss function is attributed to DeGroot (2005). The Bayes estimators and Bayes risks 

using JP and IP under DLF are given as: 
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Where v = 1 for JP and v = 2 for GP and d represent the DLF 

 

2.4  Elicitation of hyperparameters
 

Elicitation is used to transform an expert’s knowledge in to a joint probability distribution 

about a specific quantity. In Bayesian analysis, it is used to define different values of 
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hyperparameters in a prior distribution. Many authors discussed about elicitation such as Kadane 

et al. (1980), Gavasakar (1988) and Hahn (2006). Aslam (2003) proposed different techniques 

for the elicitation of hyperparameters which are based on prior predictive distribution (PPD). In 

this study, method of PPD is selected to elicit the hyperparameters. The PPD for ‘x’ (random 

variable) may be obtained as: 

2(x) (x | ) ( )p p d


                                                                                                    (41)
 

By substituting Eqs. (3) and (9) in Eq. (41) simplification provides the following PPD : 

31 2

31 2

3 3 31 1 1 2 2 2

22 2

1 2 3

( 1)( 1) ( 1)4
(x)

( ) ( 2 ) ( 2 ) ( 2 )

uu u

uu u

wu u v xuu u v x vu u v x
p

u v w v x v x v x
 

  
   

                                                 (42) 

The PPD given in Eq. (42) is used to consider the 9 intervals (0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 

6), (6, 7), (7, 8) and (8, 9) with probabilities 0.57, 0.20, 0.10, 0.05, 0.02, 0.015, 0.012, 0.009 and  

0.004 to elicit the 9 hyperparameters. These nine intervals are solved simultaneously in 

Mathematica to assign numerical values to  hyperparameters  1 1 2 2 3 3( , , , , , , , , )u v u v u v u v w  . Finally, 

the 9 values of hyperparameters are obtained as 3.871, 3.378, 3.310, 3.078, 2.933, 2.711, 2.238, 

2.400 and 1.757.  

2.5  Simulation  

Simulated results for Bayes estimators of 3-component mixture of the Ailamujia distribution are 

obtained  and properties of  these estimates are studied in terms of different test termination 

times and sample sizes. Three different sample  sizes n = 25, 50, 100 are generated from 3-

component mixture of the Ailamujia distributions considering  parametric values 

: 1 2 3 1 2( , , , , )p p      {(0.30,0.25,0.20,0.50,0.20), and (0.1,0.15,0.1,0.40,0.30)} 

Sample of different sizes ( 1 ,p n  2 ,p n  and  1 2(1 )p p n   )  are randomly generated from the 

first, second and third component    ( 1f ( ;x 1),  2f ( ;x 2 )  and 3f ( ;x 3) )  densities. The effect 



 

of test termination time on the Bayes estimators is determined by using the type-I right censoring 

scheme. The observations greater than the pre-determined test termination time ' 't are discarded 

and treated as censored. Mathematica 12 is used to get numerical  features of BEs and PRs  and 

are given in TABLES (2-5). 

3. Result’s discussion 

From TABLES 2-5 it is noticed that when the sample size increases, Bayes estimates of 

component and proportion parameters become closer to its  true value for both termination times 

at varying sample sizes. The proportion parameter ‘ 1p ’ is under estimated using NIP and IP 

under  SELF and PLF but it is over estimated when DLF is used. Overall  under-estimation 

observed for  component of mixture model parameters and proportion parameters is lower for 

larger sample sizes. On the other hand, over estimation of component and proportion parameters 

is higher for smaller test termination times. It is also observed that for a fixed test termination 

time, the Bayes risks of the Bayes estimates decreases for larger sample sizes. But if we increase 

the test termination time the relevant risks decreases for all the priors, sample sizes and loss 

functions. However for mixing proportions ( 1p  and 2p ), SELF is better in performance as it 

provides the smaller Bayes risks. So, it is concluded that  SELF is a better choice for estimating 

the proportion parameters ( 1p  and 2p ). The selection of   the best prior  depends on the 

associated posterior risks. We observed that IP has less PRs (with some exceptions) as compared 

to NIP  under SELF, PLF and DLF. Thus, we can say that IP is more efficient prior. It is also 

observed that performance of DLF is better  for estimating parameters of component densities 

than the other two loss functions used. 

3.1 Application to repair times data 

The data from (1st Oct 2019 – 31st Dec 2019) on repair time (in hours) of different components 

used in refrigerator is taken from Haier Service Center (Rawalpindi). To demonstrate the 

applicability of proposed methodology, the repair time (in hours) of 3 components is included in 

the data set namely, compressor, thermostat and door gasket. Ailamujia distribution is a lifetime 
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distribution and it is mostly used to model the repair time. Data set consists of 120 observations 

and each component contains 40 observations. Censoring time is fixed at 73.0 ( 73.0)t  . So, the 

values which are greater than or equal to 73.0 are excluded or truncated and then Ailamujia 

mixture model is fitted to data set. 

The characteristics which are extracted from censored data to obtain the estimates  (BEs & PRs) 

for the proposed model are: n = 120, 1 38,r  2 35,r   3 35,r   1 2 3 108,r r r r     12,n r   

1

1

1

873,
r

j

j

x


  
2

2

1

585
r

j

j

x


 and
3

3

1

968
r

j

j

x


 . 

Here 12n r    indicates 10% censoring rate. BEs and BRs using both priors  under SELF, PLF 

and DLF are presented in TABLE 6.  Results represent the estimates of 3-component mixture of 

Ailamujia distribution which are repair times (in hours) of refrigerators. Reciprocal of the 

obtained estimates can be thought of average repair times of refrigerators. From the estimate of 

parameter of first  component of the mixture model, we conclude that average time of 

refrigerator repair when compressor was faulty is about 23 hours and average repair time in case 

of problem of  thermostat  is found to be about 16 hours. And from the data application, it is 

found that it takes more repair time when appliance is out of order due to door gasket as it took 

on average 50 hours to get repaired in this case. From TABLE 6, it is noticed that the results 

derived from real data example are depicting the same pattern observed under the simulation 

study (with some exceptions). From the above numerical results it is confirmed that to estimate 

the two mixing weights ( 1p  and 2p ) SELF derive the smaller PRs as compared to PLF and DLF 

and IP have smaller posterior risks than NIP (JP).  

3.2 Application to recovery times data  

Remission (recovery) times (in months) of bladder cancer patients are taken from Lee and Wang 

(2003). Data set consists of 128 observations where censoring time is fixed at 21.80 ( 21.80)t  . 

The values which are greater than or equal to ( ) 21.80 are excluded or truncated. Ailamujia 



 

distribution is a lifetime distribution and it is used in reliability and supportability data analysis 

in the field of medical science. So, the Ailamujia mixture model is fitted to this data set. The 

observations of this data set are divided in to three groups, ‘Group-I’, ‘Group-II’ and ‘Group-III’ 

to accommodate 3-component mixture model. 

Group-I Group-II Group-III 

0.08, 2.09, 3.48, 4.87, 6.94, 

8.66, 13.11, 0.20, 2.22, 3.52, 

4.98, 6.99, 9.02, 13.29, 0.40, 

2.26, 3.57, 5.06, 7.09, 9.22, 

13.80, 0.50, 2.46, 3.64, 5.09, 

7.26, 9.47, 14.24, 0.51, 2.54, 

3.70, 5.17, 7.28, 9.74, 14.76, 

0.81, 2.62, 3.82, 5.32.  

7.32, 10.06, 14.77, 2.64, 3.88, 

5.32, 7.39, 10.34, 14.83, 0.90, 

2.69, 4.18, 5.34, 7.59, 10.66,  

15.96, 1.05, 2.69, 4.23, 5.41,  

7.62, 10.75, 16.62, 1.19, 2.75,  

4.26, 5.41, 7.63, 17.12, 1.26,  

2.83, 4.33, 5.49, 7.66, 11.25,  

17.14, 1.35. 

2.87, 5.62, 7.87, 11.64, 17.36, 

1.40, 3.02, 4.34, 5.71, 7.93,  

11.79, 18.10, 1.46, 4.40, 5.85, 

8.26, 11.98, 19.13, 1.76, 3.25,  

4.50, 6.25, 8.37, 12.02, 2.02, 

3.31, 4.51, 6.54, 8.53, 12.03, 

20.28, 2.02, 3.36, 6.76, 12.07,  

21.73, 2.07, 3.36, 6.93, 8.65,  

12.63. 

 

Necessary calculations  to obtain the estimates (BEs & PRs) for proposed estimators, extracted 

from censored data are: 
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128,n   1 39,r   2 37,r   3 41,r   1 2 3 117,r r r r     11,n r   
1

1

1

219.78,
r

j

j

x


  

2

2

1

261.91
r

j

j

x


 and  
3

3

1

321.68
r

j

j

x


 . 

Here, 11n r   and we can say that we have almost 8.59% censored sample. Bayes estimates 

and the posterior risks by using JP and GP under SELF, PLF and DLF are presented in TABLE 

7. 

Bayes estimators presented in TABLE 7 represent the estimates of 3-component mixture of 

Ailamujia distribution for  remission (recovery) times of the bladder cancer patients. We can take 

the reciprocal of estimates as average remission (recovering) times of the bladder cancer patients. 

After, obtaining the estimate of parameter of all three components of the mixture model, we 

conclude that the average remission time (recovery time) of bladder cancer patients of Group-I, 

Group-II and Group-III  is 6 months, 8 months and 12 months respectively. The average 

recovery time of the patients of Group-III is more than the patients of other two groups because 

they are taking more time (one year) to recover from illness. After  observing  results we can say 

that it was a right decision of choosing a lifetime distribution.  

From TABLE 7, it is noticed that results derived are depicting the same pattern observed under 

the simulation study. Here, GP derive smaller posterior risks than  JP. The tabulated  results also 

confirm that DLF is better option for estimating the 3 component parameters and SELF is best 

option to estimate the two mixing proportions ( 1p  and 2p ). From the numerical results of  table 

7, we also find that GP have smaller posterior risks than JP and SELF have smaller posterior 

risks than the other two loss functions (PLF and DLF). So, in order to make predictions of future 

values and   for estimation of different parameters, the use of GP under SELF may be preferred.   

4. Conclusion 



 

A 3-CAMM distribution is considered and analyzed. The joint posteriors assuming Jeffreys and 

gamma priors are derived. To obtain the Bayes estimates and their associated Bayes risks, three 

different loss functions, namely, SELF, PLF and DLF have been considered. Simulated Bayes 

estimates  are obtained and their performance is compared in terms of different loss functions, 

sample sizes, priors and test termination times. We conclude from simulation results that Bayes 

(posterior) risks decrease by increasing the sample size. Also, the  simulated results show that 

DLF is  better option for estimating the mixture parameters 1 2 3( , , )    and SELF is better option 

for estimating the two mixing proportions ( 1p  and 2p ). IP is more efficient and better prior than 

NIP because it has smaller Bayes (posterior) risks. The numerical results from real data reveal 

the same trend as observed in simulated results. 

 

Table-2: Bayes estimates (BEs) and Bayes risks (BRs) in bold using JP  when 

1 0.30,  2 0.25,  3 0.20,  1 0.50,p  2 0.20p   and 2t   

n   
1  2  3  1p  2p  

25 SELF  1.205290 

0.094184 

1.002320 

0.284665 

0.907820 

0.135750 

0.455753 

0.009613 

0.236788 

0.008148 

PLF  1.213490 

0.075111 

1.154770 

0.209180 

0.985284 

0.134903 

0.469296 

0.021174 

0.252386 

0.032722 

DLF  1.282860 

0.062336 

1.272770 

0.193184 

1.071190 

0.147198 

0.479873 

0.044456 

0.269549 

0.130243 

50 SELF  1.176530 

0.045339 

0.899155 

0.120129 

0.829614 

0.076163 

0.477963 

0.005363 

0.231910 

    0.004876 

PLF  1.197250 

0.038199 

1.004590 

0.120750 

0.877950 

0.085322 

0.484960 

0.011077 

0.239395 

0.019971 

DLF  1.221440 

0.032006 

1.073210 

0.132840 

0.927918 

0.099334 

0.490614 

0.022555 

0.250130 

0.084467 
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100 SELF  1.181680 

0.022365 

0.874626 

0.062059 

0.788656 

0.039409 

0.483241 

0.002697 

0.224495 

0.002638 

PLF  1.218940 

0.019127 

0.914649 

0.068530 

0.762062 

0.049593 

0.479840 

0.005748 

0.232023 

0.012427 

DLF  1.178450 

0.017775 

0.949989 

0.091540 

0.860061 

0.057213 

    0.4830 

0.012401 

0.239252 

0.051247 

 

 

 

 

 

 

 

 

 

Table- 3:Bayes estimates (BEs) and Bayes risks (BRs) using JP when 

1 0.1,  2 0.15,  3 0.1,  1 0.40,p  2 0.30p   and 3t   

n   
1  2  3  1p  2p  

25 SELF  0.552868 

0.072274 

0.680926 

0.083704 

0.504785 

0.085590 

0.345349 

0.014999 

0.327352 

0.012805 

PLF  0.591298 

0.100252 

0.722784 

0.098833 

0.605289 

0.137364 

0.374548 

0.039951 

0.348625 

0.037407 

DLF  0.651897 

0.190617 

0.767128 

0.145953 

0.653465 

    0.23980 

0.392641 

0.109177 

0.363511 

0.105994 

50 SELF  0.539253 

0.035005 

0.644715 

0.037645 

0.431361 

0.042880 

0.342512 

0.010931 

0.307707 

0.008787 



 

PLF  0.559218 

0.064703 

0.689104 

0.059338 

0.493867 

0.092180 

0.368178 

0.029704 

0.316525 

0.026202 

DLF  0.611296 

0.128517 

0.718503 

0.102510 

0.531801 

0.216756 

0.375795 

0.085977 

0.334902 

0.079914 

100 SELF  0.504901 

0.019147 

0.682260 

0.019847 

0.407155 

0.024700 

0.358539 

0.007079 

0.279408 

0.004913 

PLF  0.537114 

0.044574 

0.661219 

0.028970 

0.417084 

0.059713 

0.357124 

0.022750 

0.302282 

0.011972 

DLF  0.620326 

0.071703 

0.723707 

    0.05630 

0.388693 

0.154098 

0.329999 

0.065863 

0.301911 

0.045966 

 

Table-4: Bayes estimates (BEs) and Bayes risks (BRs) using IP when  

1 0.30,  2 0.25,  3 0.20,  1 0.50,p  2 0.20p   and 2t   

n   
1  2  3  1p  2p  

25 SELF  

 

1.171770 

0.076599 

0.932399 

0.148378 

0.917750 

0.106736 

0.448975 

0.008577 

0.256855 

0.007576 

PLF  1.203160 

0.063649 

1.036170 

0.144109 

0.979489 

0.110103 

0.460339 

0.019017 

0.270601 

0.028067 

DLF  1.235640 

0.053738 

1.105980 

     0.14630 

1.025180 

0.118132 

0.468552 

0.041434 

0.287073 

0.103631 

50 SELF  1.165770 

0.041648 

0.926850 

0.097112 

0.827544 

0.063372 

0.472069 

0.005012 

0.238824 

0.004412 

PLF  1.187820 

0.035526 

0.949360 

0.100276 

0.877304 

0.074783 

0.478020 

0.010579 

0.251454 

0.018297 

DLF  1.205430 

0.030936 

1.003220 

0.109421 

0.940032 

0.086743 

0.483598 

0.022062 

0.260804 

0.072750 
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100 SELF  1.153570 

0.021436 

0.946538 

0.062052 

0.758116 

0.033656 

0.470147 

0.002637 

0.224905 

0.002551 

PLF      1.24070 

0.018336 

0.891234 

0.078688 

0.792378 

0.050242 

0.473054 

0.005460 

0.239953 

0.012599 

DLF  1.196310 

0.016094 

0.928624 

0.088253 

0.860322 

0.065291 

0.478999 

0.011788 

0.247478 

0.051262 

 

Table-5: Bayes estimates (BEs) and Bayes risks (BRs) using IP when 

1 0.1,  2 0.15,  3 0.1,  1 0.40,p  2 0.30p   and 3t   

n   
1  2  3  1p  2p  

25 SELF  0.639577 

0.059002 

0.688616 

0.062410 

0.547398 

0.070035 

0.340366 

0.011849 

0.347010 

0.011574 

PLF  0.688223 

0.097446 

0.724293 

0.090837 

0.616709 

0.121959 

0.356774 

0.036292 

0.365362 

0.033418 

DLF  0.711666 

0.150088 

0.795075 

0.136165 

0.698809 

0.205076 

0.380734 

0.099653 

0.381353 

0.089383 

50 SELF  0.582550 

0.035943 

0.671267 

0.038305 

0.436113 

0.043923 

0.338018 

0.010299 

0.315835 

0.008671 

PLF  0.605031 

0.066240 

0.691771 

0.063633 

0.524335 

0.089421 

0.355850 

0.029701 

0.336995 

0.026394 

DLF  0.668096 

0.116399 

0.711103 

0.104615 

0.561086 

0.203067 

0.365444 

0.078965 

0.353913 

0.072698 

100 SELF  0.658877 

0.018693 

0.719778 

0.018353 

0.365034 

0.019425 

0.314393 

0.005111 

0.297123 

0.004346 

PLF  0.587324 

0.032885 

0.707958 

0.027015 

0.378229 

0.054461 

0.346142 

0.017102 

0.285224 

0.011985 



 

DLF  0.612876 

0.093776 

0.682443 

0.082066 

0.524453 

0.140832 

0.362875 

0.060965 

0.337370 

0.045270 

 

Table-6: Bayes estimates (BEs) and Bayes risks (BRs) using  JP and IP for repair times data  

Prior  
1  2  3  1p  2p  

JP SELF  0.041684 

0.000032 

0.059527 

0.000053 

0.019542 

0.000007 

0.322028 

0.001848 

0.293045 

0.001674 

PLF  0.042068 

0.000767 

0.059969 

0.000883 

0.019719 

0.000354 

0.324885 

0.005714 

0.295887 

0.005686 

DLF  0.042455 

0.018144 

0.060413 

0.014666 

0.019897 

0.017865 

0.327767 

0.017511 

0.298757 

0.019120 

IP SELF  0.044116 

0.000031 

0.062247 

0.000052 

0.020207 

0.000006 

0.322112 

0.001771 

0.296171 

0.001639 

PLF  0.044477 

0.000722 

0.062685 

0.000875 

0.020371 

0.000327 

0.324850 

0.005476 

0.298925 

0.005507 

DLF  0.044841 

0.016164 

0.063125 

0.013907 

0.020535 

0.015975 

0.327611 

0.016785 

0.301704 

0.018338 

 

 

Table-7: BEs and PRs using UP, JP and GP for real life data set at 21.80t  under SELF, PLF and DLF 

Prior  
1  2  3  1p  2p  

JP SELF BE 

PR 

0.174729 

(0.000441) 

0.127229 

(0.000539) 

0.079830 

(0.000206) 

0.306660 

(0.001624) 

0.302813 

(0.001966) 

PLF BE 

PR 

0.175988 

(0.002517) 

0.129330 

(0.004202) 

0.081108 

(0.002557) 

0.309296 

(0.005272) 

0.306041 

(0.006457) 
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DLF BE 

PR 

0.177256 

(0.014252) 

0.131466 

(0.032228) 

0.082407 

(0.031274) 

0.311955 

(0.016972) 

0.309304 

(0.020988) 

IP SELF BE 

PR 

0.182557 

(0.000440) 

0.134196 

(0.000534) 

0.081318 

(0.000192) 

0.307871 

(0.001583) 

0.303726 

(0.001860) 

PLF BE 

PR 

0.183784 

(0.002454) 

0.136170 

(0.003947) 

0.082492 

(0.002347) 

0.310431 

(0.005121) 

0.306774 

(0.006095) 

DLF BE 

PR 

0.185019 

(0.013310) 

0.138172 

(0.028775) 

0.083682 

(0.028250) 

0.313013 

(0.016429) 

0.309852 

(0.019769) 
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