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ABSTRACT

In this study 3-component mixture model using Ailamujia distribution is analyzed under
Bayesian paradigm. Joint posteriors are obtained for Jeffreys’ and gamma priors. Bayes
estimators of mixture parameters and associated Bayes risks are derived using three loss
functions i.e squared error loss function (SELF), precautionary loss function (PLF) and
DeGroot loss function (DLF). The prior predictive method is used for hyper parameter
elicitation . To numerically check the performance of Bayes estimators, simulated results are
obtained for different test termination times, parametric values and sample sizes. Two data
sets, on repair times of refrigerator components and recovery times of cancer patients are
analyzed to numerically exhibit the applicability of proposed mixture model. Results suggest
that DLF is a better option for estimating the component parameters.

Keywords: Mixture Model ; Bayes risk;  Loss function; Hyperparameters ; Prior predictive

method; Jeffreys’ prior

1. Introduction

A new lifetime probability model by Lv et al. (2002) known as an Ailamujia distribution is an
emergent candidate in supportability data analysis in the field of engineering, medical science

and quality control. Ailamujia distribution has proven suitable to be applied in some practical
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situations, such as to model the repair, guarantee and the distribution delay times. For example,
Yu et al. (2008) used the Ailamujia distribution to analyze the degree of injury in the battle
ground and developed a new method to address the issues related to production and distribution
of such injury in campaign macrocosm. As a competitive model, this new distribution has
attracted attention of many authors. Long (2015) presented the Bayesian analysis of Ailamujia
distribution by taking type-1l censoring under three different priors. Rashid et al. (2018)
developed a new compound lifetime distribution called Ailamujia Power Series Distribution
(APSD). Jayakumar and Elangovan (2019) introduced Area Biased weighted Ailamujia
distribution (ABWAD). Rather et al. (2022) studied Exponentiated Ailamujia distribution and
explored its properties. Gomma et al. (2023) introduced an alpha power Ailamujia distribution
and showed that it is more suitable then existing competing models. Aijaz et al. (2022) analyzed

count data by formulating poisson area biased Ailamujia distribution.

The probability density function (p,d,f) and cumulative distribution function (C.D.F) of
Ailamujia distribution are given as respectively:

f (x;0) = 4x 0% exp(—26x) x>0,02>0 (1)
F(x) =1-(1+26x)exp(-26x) (2)
Where @ is an unknown parameter.

Mixture models formally are composed of two or more probability distributions to capture
heterogeneity present in the data. Mixture models have widespread applications almost in all
fields of life, from economics to medicine, engineering, social sciences and psychology. For
example, in genetics, on a chromosome the location of the quantitative traits and interpretation
about microarrays both are connected to mixtures. If some specific mechanism is defined on the
basis of which observations are allocated to one of the member of population is usually termed as
direct application of mixture models. For example, financial returns act differently in crisis and
normal situation. When mixtures are only defined for simplicity or mathematical flexibility and

we do not assume any underlying mechanism then it refers to an indirect application of mixed



models. Finite mixture model is used as flexible model when distributions are heavy tailed, data
is heterogeneous and heterogeneity is observed in cluster analysis. Several statisticians have
used mixture distribution to analyze different statistical problems. For example, Kanji (1985)
used mixture distribution to describe the wind shear data. Noor et.al. (2020) applied Inverted
Kumaraswamy (IKum) mixture model to estimate burning velocity of different chemicals.
Feroze and Aslam (2020) considered the reliability estimation for the Topp Leone mixture model
using Bayesian technique. For analysis and applications of mixture models one can see Castet

and Saleh (2010) and references therein.

Censoring is a condition in lifetime data when only partial information is observed. In this
context Romeu (2004) and Gijbels (2010) have provided valuable amount of information. Noor
and Aslam (2013) analyzed inverse Weibull mixture model using type-I censoring scheme under
Bayesian perspective. Noor et.al. (2021) formed a 4-component mixture model to estimate the
average number of incidences and deaths for both genders considering different types of cancer
diagnosed in Pakistan . Tahir et al. (2019) used doubly censored data to analyze the mixture of

Burr-XI1 distributions under Bayesian setup.

Vast usefulness of mixture modeling motivated us to propose a new versatile 3-component
Ailamujia mixture model. The proposed model is thus analyzed under Bayesian setup using

censored data.

The main scheme in the article is as follows: A model to be analyzed along with its likelihood
function for type-1 censoring scheme is given in section 2. The joint posteriors assuming non-
informative and informative priors are derived in the same section. Further, section 2 also
contains the derived Bayes estimators under three different loss functions. Elicitation of
hyperparameters is also part of this section. Simulated and real data results and discussion on

results is provided in section 3. Conclusion derived from the study is given in section 4.

2. Materials & Methods
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This section contains the model, likelihood function and estimation of parameters under different
loss functions using informative and non-informative priors.

2.1 The model and likelihood function

A finite 3-CAMM for a random variable X is defined as:

f(X’\P):Zpd fd(x)1

3
f (W) =D py4x6; exp(—26,x)
d=1

©)
And C.D.F of 3-CAMM is given as:
3
F(x,P) :1—[2 py 1+ 26, x) exp(—26, x)j (4)
d=1

Where Y=(6,,p,), d=1273,

p,p, 20, p+p,<1.,x>0, 6,20

Figure:1 shows the p.d.f and C.D.F of 3-component Ailamujia mixture distribution and it can
be viewed that graph of the distribution is positively skewed.
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Fig :1 Graph of the p.d.f and C.D.F of 3-component mixture of Ailamujia distribution

Let we assume a life time experiment for a 3-CAMM with a fixed termination time. It is
observed that r out of n total units are failed by the end of the experiment and remaining

n—r units are functional. So, after inspecting r units (failed items), it is possible to identify



r,randryunits and assign them to three subpopulations respectively. Here obviously
r=r+r,+r, represent total number of uncensored observations and the remaining n—r

observations are known as censored observations. Let definex; , 0<x; <t, as the lasting time

of the j" (j=12,..,1,) unit that belongs to theh™ (h=1,2,3) subpopulation. The likelihood

function of a 3-component mixture model for type-1 right censored data (Everitt and Hand
(1981)) can be written as:

L(¥ | x) oc {H P, fl(xl,-)HH P, fz(XZj)HH(l— P, = P2) f3(x3,-)}{1— F)}
j=1 j=1 j=1

()

After simplification the likelihood function becomes:

n-

(“P|X OC‘92r1+m‘92r2+I02r3+qZ: Zr:

: n-r=k\(k\(k-s\/s P -
pr1+” r=k+m fz+ =S+ (1 p-p )r3+s+q
k=0 m=0 s=0 I=0 qZ:[ J[ J[Sj[ | j[qj 1 1~ M

(0123 X, + 21— —K) + 2m)exp(-,23 x,, 2k —5) + 2)exp(-0,23 x, + 215+ )
j=L j=1 j=L

i
H

(6)

WhereW¥ =(6,,p,), d=12,3 p,,p, and p,are mixing proportions and p, p,>0, and
X = (Xgyeens X s Xopaeens Xop, s Xa1, 00, Xg, ) @re the observed failure times.

2.2. Posterior distributions using Jeffreys’ and Gamma priors

Non-informative prior is used when no or limited information is available about the parameter.
Most commonly used non-informative prior is Jeffreys’ prior. Informative prior (IP) on the other
hand conveys definite information about the parameter of interest. In this study gamma prior is

used as an informative prior.
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2.2.1. Posterior distribution using NIP

Jeffreys’ prior is considered for mixture model parameters 6, . Jeffreys prior utilizes the Fisher

information  criteria  and is  defined as p(ed)oc|l(0d)|5, d=12,3, where

0% (x| 6,)
2

} is the Fisher’s information matrix. While prior for mixing proportion
d

u@):—E{

py is assumed to be uniform over the interval (0,1) . The joint prior distribution of parameters

0, and p, (Sinha, 1998) is written as:

3
1
e (F) o He—, 6,>0, 0<p, <1 @)

d

Using JP (Eq. (7)) and likelihood function (Eg. (6)), the joint posterior distribution becomes:

n-rn-r-k k k-s s n-r n—r-— k k k—S S
ol 1907 S i o o ST
- 1k:0mzzozzt;|0qz K m sIU 1 )\qg P 1 @®)

0
070,770, exp(—GH,, ) exp(—6,H,,) exp(-6,H,;)

where
E,=2r+mE, =2r,+E, =2r,+q,L,=r+n-r-k+m+L M, =r,+k—s+1+1,

Ny, =6 +S+q+1, H11_22x1 +2t(n—r—k)+2tm, HZl_ZZx +2t(k —s)+2tl, H31—22X +2ts +2tq,

j=1 j=1 j=1
and

n—r n—r—k

kK k-s s k k k_
SSHCRICIES 3035333 il i |l (4 O ORTROr SRR ES

2.2.2. Posterior distribution using IP

Suppose 6, LU gamma(v,,u,) and proportion parameters p, ! BivBeta(u, Vv, w).The joint prior
distribution is written as:

Vgt v gy “1pri(1-p - p,)**t

2 2 . uz—1 pl p2
oy PPN o) s et B RS o

7 (W) =



Resulting posterior distribution using IP (Eqg. (9)) and likelihood function (Eq. (6)), is given as:

&GS & ((n-r)(n-r=k)(k)(k-s)s
ppost(\P|X):Dz—lz Z ZZ [ y ]( j[ j[ | ][q) plLoz*l 2/'02*1(1_ pl_pz)Norl 01E1z—1

m S (10)

Lol Il

‘92E22_193E32_ exp(_‘nglz) exp(—92 H 22) EXp(—t93 Hsz)

E,=2r+m+u,E, =2r,+1+u,,E, =2, +q+u,, L, =, +n—-r—-k+m+u,M,, =r,+k—s+I+v

Ny, =rL+S+g+w,H, =22x1j +2t(n—r—KkK)+2tm+v,

=

H,, :ZZZ:XZJ. +2t(k —s)+2tl +v,,H,, :223:x3j + 2ts + 2tq + v,

i=1 i=1
n-r n—r—k

SUCRICRIICS) 35 %3 Ll S 4 L W CTRUTREEEES

k=0 m=0 =0 =0 g0 m S
2.3. Bayesian estimation under different loss functions

Loss function is essential component of Bayesian estimation and different loss functions are used
to serve the purpose as there is no proper analytical method and rule that identifies which loss
function is appropriate to be used. The symmetric loss functions are not suitable in many
statistical problems, especially when we want to estimate the reliability and failure rates because
overestimation will generate more loss than the underestimation. So, we use both symmetric and
non-symmetric loss functions to evaluate Bayes estimators. Squared error loss function (SELF)
is the most famous among symmetric loss functions in Bayesian statistics. But precautionary loss
function (PLF) and DeGroot loss function (DLF) are frequently used non-symmetric loss
functions. The Bayes estimator @ is obtained by minimizing Bayes risk is defined

as p(@) = E,{L(0, @)}, WhereL(0,®) is the loss incurred in estimating 6 byw. The

expressions for Bayes estimators and their risks under these loss functions are given in Table 1.

Tablel. Bayes estimators and their risks under loss functions
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Loss Functions Bayes Estimators Bayes Risks
SELF = L(0,0)=(0-a) @ =E,, (6) P(@) =E,, (6°)~{E (OF
(0-0) - . a -
PLF = L(6,0)= - o ={E,, (0°)} pl0) =AE,, (0°)F - AE,, ()}
_ -\ -0 ’ ~ E6|x(02) ~\ _ _{E0|x (0)}2
ou = ea)-{ “TE,O) PO @)

2.3.1 Bayes Estimators and Bayes Risks under SELF

In perspective of least square theory, SELF was introduced by Legendre (1806). Following

Bayes estimators and Bayes risks are obtained using JP and IP under SELF:
5 T(E, +DT(E)I(E,) B ' G oS s [n r](n r- kj(k](k_sj(j ~(Eyy+) |y ~Epy g -E
Hsv 1v 2v 3v ><Hv( 1y )Hvszvav
1 D, ZZZZ k) m As)Ut Jla) ™ % @
~ T(E,)(E, +)I(E,) &"& & n-ryn-r-k\(k\ k-s\(s
9 vV V
w0 D PN k m sl lg) (12)

B(LOV’MOV'NOV)
(Elv)l—‘(EZV)l—‘(E?,vdl_l)n R SERE n-r n-r- k k k—S S
L e e a9

E, E, (E; +1
Hlv VHZV vH3v ! (LOV’MOV’ Ov)

R F(Elv)r(EZV)r(ESV) n-rnrk k k=s s fn—r n-r-k k k—S S
Prsv = D kZ:mZosZ(;|qu(;( K J( m ](Sj[ I j[qJ (14)

v

H1VE1\, H 2VE2V H3VE3V B(LOV +1, M ov? NOV)

D>
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. _F(ElV)F(EZV)F(ESV) n-rnr-k k k=s s fn—r n-r-k k k—S S
22Ky (e o

H].:IElv H;VEZV H:;/ESV B(LOV’ MOV +1’ NOV

And respective risks are:

. n-rn-r-k k k-s s - — k k k
o 1SV):F(|51v+2)FD(Ezv)F(Esv) Zzzz[”krj[n r= J( ][ Is](q]

0
A )2
Hl:/(E1V+2 EZVH Esz(L(]v OV’N v) {glsv}

n-rn_r-k k k-s s ‘n_r n-r—-k k k—s S
( 35\,) _ F(Elv)r(EZV)r(Eav + 2) Z Hl;El" HZ_VEZVH;V(E“J'Z)
D ~0 m=0 s=0 I=0 q=0 k m S | q

B(LOV +2 MOV’ NOv) { lsv}2

A _F(Elv)F(EZV)F(E?:v) O S (h-r)(n-r-k\(k)(k=s)(s
R 10205 X(nl (N 8

H- E1vH2VEsz EavB(LOV’MOV_'_Z,NOV)_ {E)ZSV}Z

Where v =1 for JP and v = 2 for GP and s represent the SELF

2.3.2 Bayes Estimators and Bayes Risks under PLF

(15)

(16)

(17)

(18)

(19)

(20)

Norstrom (1996) introduced PLF and a special case of general class of PLFs. The Bayes

estimators and Bayes risks using JP and IP under PLF are given as:
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T(E, +T(E, )I(E, ) T &8 & (n-r)(n-r-k)(k|(k-s 2
1pV{ D, gﬁ%;;; [ k J[ m j[s][ I j[q]x (21)
Hlv(E1V+2) H ZVEZV H3VE3V B(LUV , M o Ng,
1
F(Elv)l“(EZﬁZ)F(EsV) ”’rnikzk:k‘si [n—rj[n—r kj[k)[k sj[ jx 2
Oy = D, 0 mo 0100 \ K m s)U 1 g (22)
H E, H (Epy+2 SVESVB(LOV,MOV, o

Hl_\/ElvHZ_EZVHS_\/(E3V+2)B(L0v’ Ov? Ov
I'(E,)T(E, ) (E,) “-rnikzk:k-si (n—rJ[n—r—kj[kj[k_s](sj 2
Dv k=0 m=0 s=0 I=0 g=0 k m S I q (24)

rjlpv =
1
['(E, )T (E,, )T (E,,) &5} rszk:kfs s (n—rj[n—r—kj(k)(k—sj(j 2
Py = D, k=0 m=0 5-0 1=0 -0 k m S | q (25)
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@W| 100 S ¥ o

\
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T(E,)T(E,)T(E, +2) &' &S &S & (n-r)(n-r-k)(k)(k-s)(s}|?
p(é?;pv):z Dv kz—;mz—oz—(;—o;—(; [ k ][ m j[SJ( | J(q] _Z{é?:sv} (28)

['(E,)T(E,,)T(E,) & "& K&s&(n=r)n-r-k)(k)(k-s)(s)|?
[— ps eI G e thl} 4a (2

H5 H, = Hy By, +2

T(E, )T (E,)T(E,) &' &S & (n-r)n-r-k)(k)(k-s|s %
P e e 301 Ul (A 1 P

H];/Ew H EVEZV H:;VEav B(LOV, M o T 2, o

Where v =1 for JP and v = 2 for GP and p represent the PLF
2.3.3 Bayes Estimators and Bayes Risks under DLF

DeGroot loss function is attributed to DeGroot (2005). The Bayes estimators and Bayes risks
using JP and IP under DLF are given as:

s & n-r)n-r-k)(k\(k-s)(s
P LCERICRNCH) 1) Z[ k ][ ) j[sj[ | ][q)B(LOV,MOV,Nm

-(Ey+2) g -E, -E A
Hlv ! H2v VH3V ' /Hlsv

(31)

n-r n-r-k

| rkk ks in—r\n-r-k\(k\(k-s)s
RS bh i) (O Wy W

By -Ext g -E» 1 A
_HlleZV2 H3v3/02

sV

kkss Mn=r)(n-r=k\(k\k-s\s

A

-Ey -y g —(E5y+2)
_H1v1H2v2H3v ’ /9
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Hy ™ Hoy ™ Hy™ [ Py,
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I'(E, )I(E,,)I'(E B(Ly,, My, +2,N,,
AZdv _ (Elv) ( 2v) ( 3v)k:0 mZ:O §|oqzo[ K J[ m ][SJ( I ][qj (LOV 0 0 ) (35)

Hl:/Eiv H;vEZV H;VEEV / ﬁZSV
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o pfor eSS (V] ]
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Where v =1 for JP and v = 2 for GP and d represent the DLF

2.4 Elicitation of hyperparameters
Elicitation is used to transform an expert’s knowledge in to a joint probability distribution

about a specific quantity. In Bayesian analysis, it is used to define different values of



hyperparameters in a prior distribution. Many authors discussed about elicitation such as Kadane
et al. (1980), Gavasakar (1988) and Hahn (2006). Aslam (2003) proposed different techniques
for the elicitation of hyperparameters which are based on prior predictive distribution (PPD). In
this study, method of PPD is selected to elicit the hyperparameters. The PPD for ‘x’ (random

variable) may be obtained as:

PO =] p(x| 1)z, (1)dY

(41)
By substituting Egs. (3) and (9) in Eq. (41) simplification provides the following PPD :
0(X) = 4 uu, (U VX v, (U, +D)V,2X WU (U +1)V,eX
UHVHW) | (+2X)%2 (v, +2%)% (v +2x)% 7 42)

The PPD given in Eq. (42) is used to consider the 9 intervals (0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5,
6), (6, 7), (7, 8) and (8, 9) with probabilities 0.57, 0.20, 0.10, 0.05, 0.02, 0.015, 0.012, 0.009 and
0.004 to elicit the 9 hyperparameters. These nine intervals are solved simultaneously in
Mathematica to assign numerical values to hyperparameters (u,V;,U,,V,,U,,V,,U,V, W) . Finally,

the 9 values of hyperparameters are obtained as 3.871, 3.378, 3.310, 3.078, 2.933, 2.711, 2.238,
2.400 and 1.757.

2.5 Simulation

Simulated results for Bayes estimators of 3-component mixture of the Ailamujia distribution are
obtained and properties of these estimates are studied in terms of different test termination
times and sample sizes. Three different sample sizes n = 25, 50, 100 are generated from 3-

component mixture of the Ailamujia distributions considering parametric  values

1(6,,6,,6,,p,,p,) = {(0.30,0.25,0.20,0.50,0.20), and (0.1,0.15,0.1,0.40,0.30)}

Sample of different sizes ( p,n, p,n, and (1—p,—p,)n ) are randomly generated from the

first, second and third component  ( f, (x; 6,), f, (x; 6,) and f, (x; 8;) ) densities. The effect
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of test termination time on the Bayes estimators is determined by using the type-I right censoring
scheme. The observations greater than the pre-determined test termination time 't 'are discarded
and treated as censored. Mathematica 12 is used to get numerical features of BEs and PRs and
are given in TABLES (2-5).

3. Result’s discussion

From TABLES 2-5 it is noticed that when the sample size increases, Bayes estimates of

component and proportion parameters become closer to its true value for both termination times
at varying sample sizes. The proportion parameter ‘ p,’ is under estimated using NIP and IP

under SELF and PLF but it is over estimated when DLF is used. Overall under-estimation
observed for component of mixture model parameters and proportion parameters is lower for
larger sample sizes. On the other hand, over estimation of component and proportion parameters
is higher for smaller test termination times. It is also observed that for a fixed test termination
time, the Bayes risks of the Bayes estimates decreases for larger sample sizes. But if we increase
the test termination time the relevant risks decreases for all the priors, sample sizes and loss
functions. However for mixing proportions (p, and p,), SELF is better in performance as it
provides the smaller Bayes risks. So, it is concluded that SELF is a better choice for estimating

the proportion parameters ( p, andp,). The selection of the best prior depends on the

associated posterior risks. We observed that IP has less PRs (with some exceptions) as compared
to NIP under SELF, PLF and DLF. Thus, we can say that IP is more efficient prior. It is also
observed that performance of DLF is better for estimating parameters of component densities

than the other two loss functions used.
3.1 Application to repair times data

The data from (1% Oct 2019 — 31% Dec 2019) on repair time (in hours) of different components
used in refrigerator is taken from Haier Service Center (Rawalpindi). To demonstrate the
applicability of proposed methodology, the repair time (in hours) of 3 components is included in

the data set namely, compressor, thermostat and door gasket. Ailamujia distribution is a lifetime



distribution and it is mostly used to model the repair time. Data set consists of 120 observations
and each component contains 40 observations. Censoring time is fixed at 73.0 (t =73.0) . So, the
values which are greater than or equal to 73.0 are excluded or truncated and then Ailamujia

mixture model is fitted to data set.

The characteristics which are extracted from censored data to obtain the estimates (BEs & PRs)

for the proposed model are: n = 120, ,=38,1,=35, ,=35 r=r+r,+r, =108, n-r=12,
D %,; =873, D x,, =585and ) x,; =968.
j=1 j=1 j=L

Here n—r =12 indicates 10% censoring rate. BEs and BRs using both priors under SELF, PLF
and DLF are presented in TABLE 6. Results represent the estimates of 3-component mixture of
Ailamujia distribution which are repair times (in hours) of refrigerators. Reciprocal of the
obtained estimates can be thought of average repair times of refrigerators. From the estimate of
parameter of first component of the mixture model, we conclude that average time of
refrigerator repair when compressor was faulty is about 23 hours and average repair time in case
of problem of thermostat is found to be about 16 hours. And from the data application, it is
found that it takes more repair time when appliance is out of order due to door gasket as it took
on average 50 hours to get repaired in this case. From TABLE 6, it is noticed that the results
derived from real data example are depicting the same pattern observed under the simulation
study (with some exceptions). From the above numerical results it is confirmed that to estimate

the two mixing weights ( p, and p,) SELF derive the smaller PRs as compared to PLF and DLF

and IP have smaller posterior risks than NIP (JP).
3.2 Application to recovery times data

Remission (recovery) times (in months) of bladder cancer patients are taken from Lee and Wang

(2003). Data set consists of 128 observations where censoring time is fixed at 21.80 (t =21.80) .

The values which are greater than or equal to (>) 21.80 are excluded or truncated. Ailamujia
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distribution is a lifetime distribution and it is used in reliability and supportability data analysis
in the field of medical science. So, the Ailamujia mixture model is fitted to this data set. The
observations of this data set are divided in to three groups, ‘Group-1’, ‘Group-I1’ and ‘Group-11I’

to accommodate 3-component mixture model.

Group-I

Group-Il

Group-Il11

0.08, 2.09, 3.48, 4.87, 6.94,

8.66, 13.11, 0.20, 2.22, 3.52,

4.98, 6.99, 9.02, 13.29, 0.40,

2.26, 3.57, 5.06, 7.09, 9.22,

13.80, 0.50, 2.46, 3.64, 5.09,

7.26,9.47,14.24,0.51, 2.54,

3.70,5.17, 7.28, 9.74, 14.76,

0.81, 2.62, 3.82, 5.32.

7.32, 10.06, 14.77, 2.64, 3.88,

5.32,7.39, 10.34, 14.83, 0.90,

2.69, 4.18, 5.34, 7.59, 10.66,

15.96, 1.05, 2.69, 4.23, 5.41,

7.62,10.75, 16.62, 1.19, 2.75,

4.26,5.41, 7.63, 17.12, 1.26,

2.83,4.33,5.49, 7.66, 11.25,

17.14, 1.35.

2.87,5.62, 7.87, 11.64, 17.36,

1.40, 3.02, 4.34, 5.71, 7.93,

11.79, 18.10, 1.46, 4.40, 5.85,

8.26, 11.98, 19.13, 1.76, 3.25,

4.50, 6.25, 8.37, 12.02, 2.02,

3.31, 4.51, 6.54, 8.53, 12.03,

20.28, 2.02, 3.36, 6.76, 12.07,

21.73, 2.07, 3.36, 6.93, 8.65,

12.63.

Necessary calculations to obtain the estimates (BEs & PRs) for proposed estimators, extracted

from censored data are:




n=128, =39, 1r,=37, =41, r=r+r,+r,=117, n-r=11 lex“ =219.78,
1

%, =261.91and > x,, =321.68.

j=1 j=1

Here, n—r =11 and we can say that we have almost 8.59% censored sample. Bayes estimates
and the posterior risks by using JP and GP under SELF, PLF and DLF are presented in TABLE
7.

Bayes estimators presented in TABLE 7 represent the estimates of 3-component mixture of
Ailamujia distribution for remission (recovery) times of the bladder cancer patients. We can take
the reciprocal of estimates as average remission (recovering) times of the bladder cancer patients.
After, obtaining the estimate of parameter of all three components of the mixture model, we
conclude that the average remission time (recovery time) of bladder cancer patients of Group-I,
Group-1l and Group-IlIl is 6 months, 8 months and 12 months respectively. The average
recovery time of the patients of Group-I1l is more than the patients of other two groups because
they are taking more time (one year) to recover from illness. After observing results we can say

that it was a right decision of choosing a lifetime distribution.

From TABLE 7, it is noticed that results derived are depicting the same pattern observed under
the simulation study. Here, GP derive smaller posterior risks than JP. The tabulated results also

confirm that DLF is better option for estimating the 3 component parameters and SELF is best
option to estimate the two mixing proportions ( p, and p,). From the numerical results of table

7, we also find that GP have smaller posterior risks than JP and SELF have smaller posterior
risks than the other two loss functions (PLF and DLF). So, in order to make predictions of future

values and for estimation of different parameters, the use of GP under SELF may be preferred.

4. Conclusion

8l|Page



A 3-CAMM distribution is considered and analyzed. The joint posteriors assuming Jeffreys and

gamma priors are derived. To obtain the Bayes estimates and their associated Bayes risks, three

different loss functions, namely, SELF, PLF and DLF have been considered. Simulated Bayes

estimates are obtained and their performance is compared in terms of different loss functions,

sample sizes, priors and test termination times. We conclude from simulation results that Bayes

(posterior) risks decrease by increasing the sample size. Also, the simulated results show that

DLF is better option for estimating the mixture parameters (€,,6,,6,) and SELF is better option

for estimating the two mixing proportions ( p, and p,). IP is more efficient and better prior than

NIP because it has smaller Bayes (posterior) risks. The numerical results from real data reveal

the same trend as observed in simulated results.

Table-2: Bayes estimates (BEs) and Bayes risks (BRs) in bold using JP  when
6,=0.30, 6,=0.25, 4,=0.20, p, =0.50, p,=0.20 and t =2
n A A, 0, b, P,
25 SELF 1.205290 1.002320 0.907820 0.455753 0.236788
0.094184 0.284665 0.135750 0.009613 0.008148
PLF 1.213490 1.154770 0.985284 0.469296 0.252386
0.075111 0.209180 0.134903 0.021174 0.032722
DLF 1.282860 1.272770 1.071190 0.479873 0.269549
0.062336 0.193184 0.147198 0.044456 0.130243
50 SELF 1.176530 0.899155 0.829614 0.477963 0.231910
0.045339 0.120129 0.076163 0.005363 0.004876
PLF 1.197250 1.004590 0.877950 0.484960 0.239395
0.038199 0.120750 0.085322 0.011077 0.019971
DLF 1.221440 1.073210 0.927918 0.490614 0.250130
0.032006 0.132840 0.099334 0.022555 0.084467
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100 SELF 1.181680 0.874626 0.788656 0.483241 0.224495
0.022365 0.062059 0.039409 0.002697 0.002638
PLF 1.218940 0.914649 0.762062 0.479840 0.232023
0.019127 0.068530 0.049593 0.005748 0.012427
DLF 1.178450 0.949989 0.860061 0.4830 0.239252
0.017775 0.091540 0.057213 0.012401 0.051247
Table- 3:Bayes estimates (BEs) and Bayes risks (BRs) using JP  when
6,=0.1 6,=0.15,6,=0.1, p,=0.40, p,=0.30 and t =3
n 0, 0, 4, P, P,
25 SELF 0.552868 0.680926 0.504785 0.345349 0.327352
0.072274 0.083704 0.085590 0.014999 0.012805
PLF 0.591298 0.722784 0.605289 0.374548 0.348625
0.100252 0.098833 0.137364 0.039951 0.037407
DLF 0.651897 0.767128 0.653465 0.392641 0.363511
0.190617 0.145953 0.23980 0.109177 0.105994
50 SELF 0.539253 0.644715 0.431361 0.342512 0.307707
0.035005 0.037645 0.042880 0.010931 0.008787
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PLF 0.559218 0.689104 0.493867 0.368178 0.316525
0.064703 0.059338 0.092180 0.029704 0.026202
DLF 0.611296 0.718503 0.531801 0.375795 0.334902
0.128517 0.102510 0.216756 0.085977 0.079914
100 SELF 0.504901 0.682260 0.407155 0.358539 0.279408
0.019147 0.019847 0.024700 0.007079 0.004913
PLF 0.537114 0.661219 0.417084 0.357124 0.302282
0.044574 0.028970 0.059713 0.022750 0.011972
DLF 0.620326 0.723707 0.388693 0.329999 0.301911
0.071703 0.05630 0.154098 0.065863 0.045966
Table-4: Bayes estimates (BEs) and Bayes risks (BRs) using IP  when
6,=0.30, 6,=0.25, 6,=0.20, p, =0.50, p,=0.20 and t =2
n A 4, 4, P, P,
25 SELF 1.171770 0.932399 0.917750 0.448975 0.256855
0.076599 0.148378 0.106736 0.008577 0.007576
PLF 1.203160 1.036170 0.979489 0.460339 0.270601
0.063649 0.144109 0.110103 0.019017 0.028067
DLF 1.235640 1.105980 1.025180 0.468552 0.287073
0.053738 0.14630 0.118132 0.041434 0.103631
50 SELF 1.165770 0.926850 0.827544 0.472069 0.238824
0.041648 0.097112 0.063372 0.005012 0.004412
PLF 1.187820 0.949360 0.877304 0.478020 0.251454
0.035526 0.100276 0.074783 0.010579 0.018297
DLF 1.205430 1.003220 0.940032 0.483598 0.260804
0.030936 0.109421 0.086743 0.022062 0.072750




@ RESEARCH

oo

5168

5274 2095-5]

- P

3 &4

L

100 SELF 1.153570 0.946538 0.758116 0.470147 0.224905
0.021436 0.062052 0.033656 0.002637 0.002551
PLF 1.24070 0.891234 0.792378 0.473054 0.239953
0.018336 0.078688 0.050242 0.005460 0.012599
DLF 1.196310 0.928624 0.860322 0.478999 0.247478
0.016094 0.088253 0.065291 0.011788 0.051262
Table-5: Bayes estimates (BEs) and Bayes risks (BRs) using IP  when
6,=0.1 6,=0.15,6,=0.1, p,=0.40, p,=0.30 and t =3
n a 4, 4, P, P,
25 SELF 0.639577 0.688616 0.547398 0.340366 0.347010
0.059002 0.062410 0.070035 0.011849 0.011574
PLF 0.688223 0.724293 0.616709 0.356774 0.365362
0.097446 0.090837 0.121959 0.036292 0.033418
DLF 0.711666 0.795075 0.698809 0.380734 0.381353
0.150088 0.136165 0.205076 0.099653 0.089383
50 SELF 0.582550 0.671267 0.436113 0.338018 0.315835
0.035943 0.038305 0.043923 0.010299 0.008671
PLF 0.605031 0.691771 0.524335 0.355850 0.336995
0.066240 0.063633 0.089421 0.029701 0.026394
DLF 0.668096 0.711103 0.561086 0.365444 0.353913
0.116399 0.104615 0.203067 0.078965 0.072698
100 SELF 0.658877 0.719778 0.365034 0.314393 0.297123
0.018693 0.018353 0.019425 0.005111 0.004346
PLF 0.587324 0.707958 0.378229 0.346142 0.285224
0.032885 0.027015 0.054461 0.017102 0.011985
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DLF 0.612876 0.682443 0.524453 0.362875 0.337370
0.093776 0.082066 0.140832 0.060965 0.045270
Table-6: Bayes estimates (BEs) and Bayes risks (BRs) using JP and IP for repair times data
Prior 0, 0, 0, P P
JP SELF 0.041684 0.059527 0.019542 0.322028 0.293045
0.000032 0.000053 0.000007 0.001848 0.001674
PLF 0.042068 0.059969 0.019719 0.324885 0.295887
0.000767 0.000883 0.000354 0.005714 0.005686
DLF 0.042455 0.060413 0.019897 0.327767 0.298757
0.018144 0.014666 0.017865 0.017511 0.019120
IP  SELF 0.044116 0.062247 0.020207 0.322112 0.296171
0.000031 0.000052 0.000006 0.001771 0.001639
PLF 0.044477 0.062685 0.020371 0.324850 0.298925
0.000722 0.000875 0.000327 0.005476 0.005507
DLF 0.044841 0.063125 0.020535 0.327611 0.301704
0.016164 0.013907 0.015975 0.016785 0.018338

Table-7: BEs and PRs using UP, JP and GP for real life data set at t =21.80under SELF, PLF and DLF

Prior

0, 672 673 U] P,
JP SELF BE 0.174729 0.127229 0.079830 0.306660 0.302813
PR (0.000441)  (0.000539)  (0.000206)  (0.001624)  (0.001966)
PLF BE 0.175988 0.129330 0.081108 0.309296 0.306041
PR (0.002517)  (0.004202)  (0.002557)  (0.005272)  (0.006457)
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DLF BE 0.177256 0.131466 0.082407 0.311955 0.309304
PR  (0.014252)  (0.032228)  (0.031274)  (0.016972)  (0.020988)
IP  SELF BE 0.182557 0.134196 0.081318 0.307871 0.303726
PR  (0.000440)  (0.000534)  (0.000192)  (0.001583)  (0.001860)
PLF BE 0.183784 0.136170 0.082492 0.310431 0.306774
PR  (0.002454)  (0.003947)  (0.002347)  (0.005121)  (0.006095)
DLF BE 0.185019 0.138172 0.083682 0.313013 0.309852
PR  (0.013310)  (0.028775)  (0.028250)  (0.016429)  (0.019769)
References

Aafag A. Rather, C. Subramanian, Amer Ibrahim Al-Omari & Ayed R. A. Alanzi
(2022): Exponentiated Ailamujia distribution with statistical inference and
applications of medical data. Journal of Statistics and Management Systems, DOI:
10.1080/09720510.2021.1966206

Aijaz, A.S., Qurat ul Ain, Afag,A., Tripathi, R.(2022). Poisson area-biased
Ailamujia Distribution and its applications in environmental and medical
sciences. STATISTICS IN TRANSITION new series, 23(3),167-184.

Aslam, M. (2003). An application of prior predictive distribution to elicit the prior
density. Journal of Statistical Theory and applications, 2(1), 70-83.

Castet, J.F. and Saleh, J.H. (2010). Single versus mixture Weibull distributions
for nonparametric Satellite reliability, Reliability Engineering and System

Safety ., 95, 295-300
DeGroot, M. H. (2005). Optimal statistical decisions (Vol. 82). John Wiley &

Sons.

87|Page



@ RESEARCH B B
Volume 09 Issue 02

SSN: 2638-5274, 2096-5168

Everitt, B.,, & Hand, D. J. (1981). Finite mixture distributions. (New York:
Chapman and Hall).

Feroze, N and Aslam, M.(2020). Reliability estimation from Topp Leones
mixture distribution using optimal progressive censoring schemes: A Bayesian

approach, Alexandria Engineering Journal,59(3), 1539-1556

Gavasakar, U. (1988). A comparison of two elicitation methods for a prior
distribution for a binomial parameter. Management Science, 34(6), 784-790.
Gijbels, I. (2010). Censored data. Wiley Interdisciplinary Reviews: Computational
Statistics, 2(2), 178-188.

Gomaa, R. S., Hebeshy, E. A. El Genidy, M. M. and EIl-Desouky, B. S. (2023).
Alpha-Power of the Power Ailamujia Distribution: Properties and Applications.
Journal of Statistics Applications & Probability, 12(2), 701-723

Hahn, E. D. (2006). Re-examining informative prior elicitation through the lens of
Markov chain Monte Carlo methods. Journal of the royal statistical society:
Series A (Statistics in Society), 169(1), 37-48.

Jayakumar, B and Elangovan, R. (2019). A New Generalization of Ailamujia
Distribution with Applications in Bladder Cancer Data. International Journal of
Scientific Research in Mathematical and Statistical Sciences, 6(1), 61-68.

Kadane, J. B., Dickey, J. M., Winkler, R. L., Smith, W. S., & Peters, S. C. (1980).
Interactive elicitation of opinion for a normal linear model. Journal of the
American Statistical Association, 75(372), 845-854.

Kanji, G. K. (1985). A mixture model for wind shear data. Journal of Applied
Statistics, 12(1), 49-58.

Lee, E.T. and Wang, J.W. (2003) Statistical Methods for Survival Data Analysis.
Third Edition, Wiley, New York.


https://www.sciencedirect.com/science/journal/11100168

@ RESEARCH — —
Volume 09 Issue 02

SSN: 2638-5274, 20865-5168

Legendre, A. M. (1806). Nouvelles méthodes pour la determination des orbites
des cometes. (Apéndice: Sur la méthode des moindres carrés), Courcier Louis.
Francia, Paris.

Long B., (2015). Bayesian Estimation of Parameter on Opmanra Distribution
Under Different Prior Distribution. Mathematics in Practice and Theory, (4), 25,
186-192.

Lv, H. Q., Gao, L. H., & Chen, C. L. (2002). Dpmanra distribution and its
application in supportability data analysis. Journal of Academy of Armored Force
Engineering, 16(3), 48-52.

Noor, F and Aslam, M. (2013), Bayesian inference of the inverse Weibull mixture
distribution using type-1 censoring. Journal of applied Statistics, 40, 1076-1089.
Noor,F. , Masood,S. , Zaman,M. , Siddiga,M. , Wagan,R.A., Khan,l., and
Sajid,A.(2021)

Bayesian Analysis of Inverted Kumaraswamy Mixture Model with Application to
Burning Velocity of Chemicals, Mathematical Problems in Engineering Volume
2021, 18 pages https://doi.org/10.1155/2021/5569652.

Noor,F. , Masood,S. Sabar,Y., Shah, S. B. H., Ahmad,T., Abdollahi,A. and
Sajid,A.(2021). Bayesian Analysis of Cancer Data Using a 4-Component

Exponential Mixture Model Computational and Mathematical Methods in
Medicine, Volume 2021, Article ID 6289337, 11 pages

Norstrom, J. G. (1996). The use of precautionary loss functions in risk analysis.
IEEE Transactions on reliability, 45(3), 400-403.

Rashid, A., Jan, T. R., Bhat, A. H., & Ahmad, Z. (2018). A New Compound
Lifetime Distribution: Model, Characterization, Estimation and Application.
Journal of Applied Mathematics, Statistics and Informatics, 14(2), 45-57.

89| Page


https://doi.org/10.1155/2021/5569652

@ RESEARCH
Volume 09 Issue 02

Romeu, L. J. (2004). Censored data. Strategic Arms Reduction Treaty, 11(3), 1-8.

Sinha, S. K. (1998). Bayesian estimation. New Age International (P) Limited,
New Delhi.

Tahir, M., Abid, M., Aslam, M., & Ali, S. (2019). Bayesian estimation of the
mixture of Burr Type-XII distributions using doubly censored data. Journal of
King Saud University-Science, 31(4), 1137-1150.

Yu, C. M., Chi, Y. H,, Zhao, Z. W., & Song, J. F. (2008). Maintenance-decision-
oriented modeling and emulating of battlefield injury in campaign macrocosm.
Journal of System Simulation, 20(20), 5669-5671.



